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Abstract—In Cyber-Physical Systems (CPS) such as Wireless
Sensors Networks (WSN), disseminating data is crucial. Under
energy constraints with limited communications capabilities,
performing data dissemination is challenging. In such contexts,
common data dissemination methods cannot be used. Nodes must
rely on device-to-device communications policies to mitigate the
impact of communications on the nodes energy consumption.
However, depending on nodes configuration (up-times duration,
wireless technology capabilities and energy consumption), choos-
ing a suitable communication policy is challenging.

This work exposes the problem statement for using analytic
algorithms to predict the most suitable device-to-device com-
munication policy, for a given node configuration, to match a
given coverage and energy consumption target in a constrained
environment.

Index Terms—analytics, classification, data dissemination, en-
ergy constraint, distributed systems, CPS, IoT, WSN

I. INTRODUCTION

The use of distributed systems for environmental monitoring
is crucial for various applications. It allows to record the
evolution of several phenomenons such as air and water
quality or earthquake detection over large areas [1]. Several
tasks must be performed by these distributed systems such
as sensing, processing and disseminating data. They can be
built with technologies from the Internet of Things (IoT),
Wireless Sensor Networks (WSN) and more generally Cyber-
Physical System (CPS). Depending on the deployment context,
performing environmental monitoring can be challenging.

The Arctic Tundra (AT) is a particularly harsh environment
to monitor, with large isolated areas, where (i) nodes are
expected to operate for several months, under a very limited
energy budget; (ii) mobile networks provide little to no cover-
age on the monitored area, forcing nodes to rely on their own
wireless technologies; (iii) nodes are not consistently reach-
able because of harsh weather conditions (heavy snow, rain,
humidity etc.). Consequently, monitoring and disseminating
data in this context is difficult to achieve.

The Distributed Arctic Observatory (DAO) project is work-
ing on overcoming the challenges encountered in this con-
text [2]–[4]. In [5], different loosely-coupled communication
policies are proposed. This related work studies four communi-
cation policies that can be used in the AT context. Two metrics
are considered: 1) the energy consumption 2) the coverage
(representing the number of nodes that received the data). The

work highlights that, in a given context, a policy can be better
than another. Also, depending on the use case, full coverage
is not always required, especially in scenarios with energy
consumption constraints. A trade off between coverage and
energy consumption must be found. However, according to
the node configuration (up-times duration, wireless technology
and energy consumption), this trade-off can change.

In this paper, a problem statement for using supervised
learning classification algorithms to predict the most suitable
device-to-device communication policy [6] is proposed. This
work shows that the node configuration must be taken into
account as it has a significant impact on the policies perfor-
mance and the nodes energy consumption. In addition, since
the DAO context is a highly constrained environment, the
prediction models must handle a dissemination coverage target
and energy consumption budget.

This paper is organized as follow. Section II presents the
context of the work. Section III details the proposed approach.
Finally, Section IV concludes this paper.

II. CONTEXT: OBSERVING THE ARCTIC TUNDRA
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Fig. 1: Early prototype of a Raspberry Pi based Observation
Node (ON) [5].

The DAO project proposes to use a distributed system as
a monitoring infrastructure for the AT. The deployed nodes
called Observation Nodes (ON) can be based on a Single-
Board Computers (SBC), allowing for more resources and
better programming support, compared to micro-controller
based ON. Figure 1 depicts the basic blocks of a DAO
ON. This early prototype contains a Raspberry Pi board and
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Fig. 2: Overview of the observation system architecture. The
“Back-end” hosts a set of services, like [5]. Its connectivity to
Observation Nodes (ON) deployed in the Arctic Tundra uses
the gateway when available. This wireless gateway is used for
1 to 1 communications between ONs, forming a star topology.

Sleepy Pi micro-controller (6). The embedded sensors include
an optical and proximity cameras (5), an inside (2) and outside
(1) temperature and humidity sensor, and a GPS (3). From
the SBC, several network technologies are available: WiFi,
Bluetooth, 4G LTE, LTE Cat M1 and a 4G stick (4). ONs are
built with internal and external batteries connectivity (7).

In related work [6], a distributed monitoring infrastructure
for constrained scenarios such as the DAO is proposed. This
architecture is depicted on Figure 2. The ONs are in charge of
monitoring the environment and communicate with other ONs
and the back-end, through a gateway (when available). Since
the AT is a wide and isolated environment with harsh weather
conditions, ONs are expected to operate for a long period of
time. Thus, ONs are turned off most of the time and wake up
for a short duration, called up-time. During this up-time, ONs
sense their environment and make communication attempts to
other ON to disseminate data.

The ON communicates using one of the available poli-
cies (depicted on Figure 3): Baseline, Hint, Extended or
Hint+Extended:
Baseline – ONs wake up at a random time, each hour, to
perform its up-time. When an overlap between the sender and
the receiver up-time happens, the sender starts transmitting
data. If one of the ONs up-time ends, ongoing communications
are aborted and the ON turns off.
Extended – Compared to Baseline, the Extended policy does
not abort ongoing communications and ONs keep communi-
cating until data is transmitted. It implies that up-time duration
of ONs can be extended.
Hint – The Hint policy is based on Baseline. The sender
performs additional communications to send a timestamp to
receivers. It informs the receivers about the sender’s next up-
time, to increase the likelihood of up-time overlaps between
them. This timestamp can be gossiped between receivers.
Hint+Extended – This policy combines the principles of the
Extended and Hint policies, with the aim of combining the

TABLE I: Simulation Parameters

Parameters Value Citations

Bandwidth (Ltnc) LoRa 50kbps (0s) [7], [8]
NbIoT 200kbps (0s) [7]

Energy states Pidle 0.4W [9]
LoRa 0.16W or 32mA at 5V [10]
NbIoT 0.65W or 130mA at 5V [10]

Up-time Long 3 min/hour
Short 1 min/hour

Data size 1MB
# Receivers 12

effects of both.
Simulations were performed in [6], to study the impact of

these policies on the amount of ON that are able to receive the
transmitted data and their energy consumption. The parameters
used for the simulations are shown on Table I. Each run
simulates 24 hours of deployment for 13 ONs. Each ON wakes
up at a random time, each hour, for a short up-time (1 min)
or long up-time (3 mins). In each run, one sender ON tries
to transmit data during its up-times to twelve receivers ONs.
The simulations assume that ONs use Low Power Wide Area
Network (LPWAN) wireless technologies (LoRa or NbIoT) for
long-range communication with low energy consumption.

III. APPROACH

The simulation results from [6] show that, each policy has a
different impact on the coverage and the energy consumption
of nodes. This impact is mainly driven by the nodes con-
figurations. Four nodes configurations are considered. They
comprise a wireless technology and the node up-time duration:
1 LoRa with 60s up-time duration 2 LoRa with 180s up-

time duration 3 NbIoT with 60s up-time duration 4 NbIoT
with 180s up-time duration. The Figure 4 summarises the sim-
ulation results obtained in [6] for each node configuration. This
figure shows the energy consumption and the dissemination
coverage for each combination of policy, wireless technology
and up-time duration. The figure highlights the variability of
the results according to the node configuration.

As an example, the Baseline and the Hint policies are not
able to disseminate data in the scenario with 60s up-time
using LoRa. In other scenarios, these policies are able to
achieve significant coverage, up to 12 receivers. In addition,
the trends of each policy changes with the nodes configuration.
Such trends suggest that a supervised learning classification
model can be used to predict the correct policy to use in order
to save energy and achieve coverage. Moreover, deployment
specific budgets, such as the energy consumed and the targeted
coverage must be taken into account.

When the scenario requires to meet a certain energy con-
sumption budget for a given coverage, a policy could answer
one constraint while violating the other. Hence, a model that
predicts the appropriate policy to use for a given coverage and
energy budget must be introduced. This work hints at the need
to study the feasibility of such predictions using classification
models.
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Fig. 3: Example of communication scenarios for each policy. Messages, up-times and added up-times are represented as arrows,
gray and green rectangles, respectively.
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Fig. 4: Summarized results from [6], showing the overall en-
ergy consumption of nodes according to the coverage achieve
by the communication policy.

IV. CONCLUSION

Disseminating data in a resource constrained environment
such as the Arctic Tundra is challenging. As nodes are limited
in energy consumption and network communications, they
are not expected to be reachable most of the time. Hence,
existing data dissemination techniques cannot be used in such
context. Related work [6] propose several loosely coupled data

dissemination policy to tackle this issue. However, choosing
the correct policy to use is not trivial as it depends on
the node configuration, the targeted coverage and the energy
consumption budget. This work exposes the challenges and
proposes, as a future work, to use classification algorithms to
solve this problem.
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